Featured Research Papers - The Intramural Research Program of the National Institute on Drug Abuse

Skip Navigation

Featured Research Papers

A figure from this month's paper.

Featured Paper Archives
Featured paper of the Month!

April's Featured Paper!

Neural Estimates of Imagined Outcomes in Basolateral Amygdala Depend on Orbitofrontal Cortex

Neuron. 2013 Oct 16; 80(2): 10.1016

Yuji K. Takahashi, Chun Yun Chang, Federica Lucantonio, Richard Z. Haney, Benjamin A. Berg, Hau-Jie Yau, Antonello Bonci, and Geoffrey Schoenbaum

Imagination, defined as the ability to interpret reality in ways that diverge from past experience, is fundamental to adaptive behavior. This can be seen at a simple level in our capacity to predict novel outcomes in new situations. The ability to anticipate outcomes never before received can also influence learning if those imagined outcomes are not received. The orbitofrontal cortex is a key candidate for where the process of imagining likely outcomes occurs; however its precise role in generating these estimates and applying them to learning remain open questions. Here we address these questions by showing that single-unit activity in orbitofrontal cortex reflects novel outcome estimates. The strength of these neural correlates predicted both behavior and learning, learning which was abolished by temporally-specific inhibition of orbitofrontal neurons. These results are consistent with the proposal that the orbitofrontal cortex is critical for integrating information to imagine future outcomes.

You can read more about this paper at the website for PubMed.

April's Featured Paper!

The Novel Metabotropic Glutamate Receptor 2 Positive Allosteric Modulator, AZD8529, Decreases Nicotine Self-Administration and Relapse in Squirrel Monkeys

Biol Psychiatry. 2015 Oct 1;78(7):452-62.

Zuzana Justinova, Leigh V. Panlilio, Maria E. Secci, Godfrey H. Redhi, Charles W. Schindler, Alan J. Cross, Ladislav Mrzljak, Amy Medd, Yavin Shaham, and Steven R. Goldberg

You can read more about this paper at the website for PubMed.

March's Featured Paper!

Effect of the Novel Positive Allosteric Modulator of Metabotropic Glutamate Receptor 2 AZD8529 on Incubation of Methamphetamine Craving After Prolonged Voluntary Abstinence in a Rat Model

Biol Psychiatry. 2015 Oct 1;78(7):463-73

Daniele Caprioli, Marco Venniro, Tamara Zeric, Xuan Li, Sweta Adhikary, Rajtarun Madangopal, Nathan J. Marchant, Federica Lucantonio, Geoffrey Schoenbaum, Jennifer M. Bossert, and Yavin Shaham

You can read more about this paper at the website for PubMed.

Related Information...

IRP Training Opportunities...


2009 Postbacs
Postdoc, Predoc, Postbac and Summer Student training opportunities available!


2009 Summer Students
Research & Training Program for Under-represented Populations

A figure from this paper.
A figure from this paper.

Hot off the Press Archives
Featured paper of the Month!

Genome-wide DNA hydroxymethylation identifies potassium channels in the nucleus accumbens as discriminators of methamphetamine addiction and abstinence

Mol Psychiatry. 2016 Apr 5. doi: 10.1038/mp.2016.48

Cadet JL, Brannock C, Krasnova IN, Jayanthi S, Ladenheim B, McCoy MT, Walther D, Godino A, Pirooznia M, Lee RS

Epigenetic consequences of exposure to psychostimulants are substantial but the relationship of these changes to compulsive drug taking and abstinence is not clear. Here, we used a paradigm that helped to segregate rats that reduce or stop their methamphetamine (METH) intake (nonaddicted) from those that continue to take the drug compulsively (addicted) in the presence of footshocks. We used that model to investigate potential alterations in global DNA hydroxymethylation in the nucleus accumbens (NAc) because neuroplastic changes in the NAc may participate in the development and maintenance of drug-taking behaviors. We found that METH-addicted rats did indeed show differential DNA hydroxymethylation in comparison with both control and nonaddicted rats. Nonaddicted rats also showed differences from control rats. Differential DNA hydroxymethylation observed in addicted rats occurred mostly at intergenic sites located on long and short interspersed elements. Interestingly, differentially hydroxymethylated regions in genes encoding voltage (Kv1.1, Kv1.2, Kvb1 and Kv2.2)- and calcium (Kcnma1, Kcnn1 and Kcnn2)-gated potassium channels observed in the NAc of nonaddicted rats were accompanied by increased mRNA levels of these potassium channels when compared with mRNA expression in METH-addicted rats. These observations indicate that changes in differentially hydroxymethylated regions and increased expression of specific potassium channels in the NAc may promote abstinence from drug-taking behaviors. Thus, activation of specific subclasses of voltage- and/or calcium-gated potassium channels may provide an important approach to the beneficial treatment for METH addiction.

More about this paper

The nutrient sensor OGT in PVN neurons regulates feeding

Science. 2016 Mar 18;351(6279):1293-6

Olof Lagerlöf, Julia E. Slocomb, Ingie Hong, Yeka Aponte, Seth Blackshaw, Gerald W. Hart, Richard L. Huganir

More about this paper

VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons

Nat Neurosci. 2016 Mar 28. doi: 10.1038/nn.4281. [Epub ahead of print]

Jia Qi, Shiliang Zhang, Hui-Ling Wang, David J Barker, Jorge Miranda-Barrientos & Marisela Morales

More about this paper

Health and Human Services Logo National Institute on Drug Abuse Logo


The National Institute on Drug Abuse (NIDA), is part of the National Institutes of Health (NIH), the principal biomedical and behavioral research agency of the United States Government. NIH is a component of the U.S. Department of Health and Human Services.

PDF documents require the free Adobe Reader. Microsoft Word documents require the free Microsoft Word viewer. Microsoft PowerPoint documents require the free Microsoft PowerPoint viewer. Flash content requires the free Adobe Flash Player.